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Abstract

The delayed feedback control is applied to suppress the vibration of vertical displacement in a two-degree-of-freedom

nonlinear system with external excitation. Effects of both positive and negative feedback control are observed when the

primary resonance and 1:1 internal resonance occur in the system simultaneously. The method of multiple scales is

employed to obtain analytical solutions of the system under consideration. With the time delay varying for a fixed gain, it is

seen that the vibration can be suppressed at some values of the delay. These values form a called ‘‘vibration suppression

region’’, where one can easily observe the ‘‘maximum vibration suppression point’’. At this point, the vertical vibration

could be suppressed about 65% for the positive feedback and 86% for the negative one by comparing with the nonlinear

vibration absorber without delayed feedback control. However, the vibration suppression is invalid at some values of the

delay. Effects of the gain on the vibration suppression are also investigated. The dynamical behaviors became complex

with the gain increasing at some values of the delay, but the vibration can be suppressed more efficiently at other values. It

implies that one can always choose a suitable delay and gain to achieve a vibration suppression. All analytical predictions

of this paper are in good agreement with the numerical simulation.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

The theory and technique of vibration suppression are extensively studied for many years. There are three
fundamentally different primary methods of vibration suppression, i.e. damp shock absorber, nonlinear
vibration absorber and delayed feedback control vibration absorber.

The damp shock absorber is a classical technique. It is well known that the theory and experiment about the
technique of damp shock absorber are sufficiently studied in the past years. The technique of damp shock
absorber is widely used in the fields of aerospace engineering, automobile industry, instrumental apparatus,
weapons, architecture industry and engineering machine. In numerous damp shock absorbers, dynamic
vibration absorber is the focus of attention. It is often used to remove undesirable oscillations from the
primary system. For example, mass–spring–dashpot dynamical vibration absorber is installed in a helicopter
cockpit [1].
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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Recently, nonlinear vibration absorber is designed based on nonlinear dynamics. The effectiveness of the
nonlinear vibration absorber was first outlined by Roberson [2]. Arnold [3] concluded that a softening spring
would increase the vibration suppression bandwidth, while the hardening spring would do contrarily. Lee and
Shaw [4] investigated the dynamics of a pair of identical centrifugal pendulum vibration absorbers. They
indicated that the absorbers could reduce torsional vibrations in rotating machines for effects of nonlinear
behavior of the absorbers. From a physical point of view, nonlinearity of the spring could increase the
suppression bandwidth of the absorbers for some cases. The saturation phenomenon was first discovered by
Nayfeh et al. [5] for motions of ships. The saturation phenomenon, that is, the response amplitude of the
primary system, linearly increases with the amplitude of excitation. However, once the amplitude of the
excitation passes a critical value, the response amplitude of the primary system is saturated at a specific value
and all the additional energy from the excitation is channeled to the secondary system. For the passive
vibration absorber system, it is too complex to design, and the ratio of internal resonance is difficult to control
exactly. Thus, many authors considered active vibration control, such as analog electric-circuit controller [6],
digital signal [7], piezoelectric patches [8] and Terfenol-D [9], to suppress vibrations.

The technique of delayed feedback control vibration absorber is a new technique of vibration suppression.
In fact, time delay in control system is derived from measurements of system states, by physical properties of
the equipment used for control and transport delay, by performing on-line computation, filtering and
processing data and by calculating and executing the control forces as required. Therefore, the studies of
control system with time delay have been developed in various research fields, such as mechanics [10],
mechanical engineering [11–13], combustion dynamics [14], aerospace engineering [15], communication [16]
and medicine [17,18]. The delayed feedback control has been frequently applied in controlling chaos,
improving stability of periodic solutions and stabilizing unstable equilibria since the pioneering work was
given by Pyragas [19]. Our previous research [20] also showed that the delay may be used as a simple but
efficient ‘‘switch’’ to control motions of a system: either from order motion to chaos or from chaotic motion to
order for different applications. Delayed position feedback control to dynamical structures was first presented
by Olgac and Holm-Hansen [21] by introducing a delayed resonator. The technique offers a number of
attractive advantages in eliminating tonal vibrations of the primary system, such as real time tunability, wide
range of frequency, perfect tonal suppression and simplicity of the control. Then, many results were obtained
for linear systems [22–25].

It should be noted that the present absorber with delayed resonator is only considered for the case that the
system is linear. It follows from the above review that the delayed position feedback control and nonlinear
vibration absorber have their advantages, respectively. Motivated by these advantages, we will here design a
device together with delayed feedback control and nonlinear vibration absorber and investigate effects of the
device on vibration suppression in a two-degree-of-freedom system. To the best knowledge of the authors, the
delayed feedback control is not applied for the system with nonlinear vibration absorber.

The present paper is organized as follows. The formulation of the problem is shown in Section 2. In Sections
3 and 4, the perturbation analysis and the stability of the equilibrium solutions are given. The analytical
solutions and numerical simulations for the positive and negative delayed feedback control are presented in
Sections 5 and 6, respectively. Concluding remarks are presented in Section 7.

2. Formulation of the problem

A two-degree-of-freedom model of a nonlinear vibration absorber is described in Ariaratnam [26],
Malhotra and Srinamachchivaya [27] and Zhang and Li [28]. In this paper, a position feedback with time delay
is introduced into the above model to control the vibrations of the vertical displacement in the dynamical
system, as shown in Fig. 1.

The system consists of a grid body of mass m and the relevant moment inertia I, and is supported by two
identically placed spring–dashpot systems. The dashpot systems are assumed to be linear with viscous
damping coefficient b, and the springs are assumed to be nonlinear with force–displacement (f�d) relationship
given as f ¼ kdþ cd3. Assuming the support is given a periodic excitation (F ðtÞ ¼ A cos ot), and let d denote
the distance from the vertical axis of symmetry to the point of attachment of either of spring–dashpot units, q1
and q2 denote the relative vertical displacement and pitching angle. A time delayed position feedback
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Fig. 1. A model describing the nonlinear vibration absorber with delayed feedback.
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g1 q1ðt� tÞ � q1ðtÞ
� �

is introduced to the nonlinear dynamical system. Then the governing equations of
motions describing the vertical displacement q1 and the pitching angle q2 can be expressed as

m €q1 þ 2b _q1 þ 2kq1 þ 2cðq3
1 þ 3d2q1q

2
2Þ þ g1ðq1t � q1Þ þm €F ¼ 0, (1)

I €q2 þ 2d2b _q2 þ 2d2kq2 þ 2cd2
ðd2q3

2 þ 3q2
1q2Þ ¼ 0, (2)

where q1t ¼ q1ðt� tÞ. It should be noted that the delayed feedback disappears in Eqs. (1) and (2) when t ¼ 0
and Eqs. (1) and (2) are identical to those in Refs. [26–28]. Thus, it is easy to observe effects of the delayed
feedback when t 6¼0.
3. Perturbation analysis

Firstly, a set of dimensionless (or normalized) variables are defined as

t� ¼
O
o

t; x1 ¼
q1

d
; x2 ¼ q2; �m1 ¼

2bO
mo

; �m2 ¼
2d2bO

Io
; o2

1 ¼
2kO2

mo2
; o2

2 ¼
2d2kO2

Io2
,

�a1 ¼
2cd2O2

mo2
; �a2 ¼

6cd2O2

mo2
; �b1 ¼

2d4cO2

Io2
; �b2 ¼

6cd4O2

Io2
; �f ¼

AO2

d
,

�g ¼
g1dO2

mo2
; t� ¼

O
o
t.

It follows from Ref. [28], both damping b and nonlinear stiffness c are weak or very small, which implies e can
be considered as a perturbation parameter with 0o�� 1. Dropping the asterisk for convenience, one can
write Eqs. (1) and (2) as

€x1 þ o2
1x1 ¼ �ðf cos Ot� m1 _x1 � a1x3

1 � a2x1x
2
2 � gx1t þ gx1Þ, (3)

€x2 þ o2
2x2 ¼ �ð�m2 _x2 � b1x

3
2 � b2x

2
1x2Þ, (4)

where O is a dimensionless frequency, and x1t ¼ x1ðt� tÞ.
It is assumed that d equals the radius r of gyration for the relevant moment inertia I, that is,

I ¼ mr2 ¼ md2. It yields that a1 ¼ b1 and a2 ¼ b2.
The method of multiple scales [29] is employed to seek second-order approximate solutions of Eqs. (3) and

(4) in the following form:

x1ðt; �Þ ¼ x10ðT0;T1Þ þ �x11ðT0;T1Þ þ . . . , (5)

x2ðt; �Þ ¼ x20ðT0;T1Þ þ �x21ðT0;T1Þ þ . . . , (6)
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x1tðt; �Þ ¼ x10tðT0;T1Þ þ �x11tðT0;T1Þ þ . . . , (7)

where T0 ¼ t is the fast time scale and T1 ¼ �t is a slow time scale envelope of the response. The derivatives
with respect to time are expressed in term of the new scales as

d

dt
¼ D0 þ �D1 þ . . . , (8)

d2

dt2
¼ D2

0 þ 2�D0D1 þ . . . , (9)

where Dk ¼ q=qTk, k ¼ 0; 1.
Substituting Eqs. (5)–(9) into Eqs. (3) and (4) and equating coefficients of like powers of e yields
Order e0:

D2
0x10 þ o2

1x10 ¼ 0, (10)

D2
0x20 þ o2

2x20 ¼ 0. (11)

Order e1:

D2
0x11 þ o2

1x11 ¼ f cos OT0 � 2D0D1x10 � m1D0x10 � a1x3
10 � a2x10x2

20 � gx10t þ gx10, (12)

D2
0x21 þ o2

2x21 ¼ �2D0D1x20 � m2D0x20 � b1x
3
20 � b2x

2
10x20. (13)

The solutions of Eqs. (10) and (11) can be expressed as

x10 ¼ A1ðT1Þe
io1T0 þ cc, (14)

x20 ¼ A2ðT1Þe
io2T0 þ cc, (15)

where A1 and A2 are arbitrary functions at this level of approximation, i �
ffiffiffiffiffiffiffi
�1
p

, and cc denotes complex
conjugate. The external excitation and the delayed feedback are expressed in complex forms given by

f cos OT0 ¼
1

2
f eiOT0 þ cc (16)

and

x10t ¼ A1tðT1Þe
io1ðT0�tÞ þ cc. (17)

Expand A1t in a Taylor series [30] under the assumption that the product of time delay and the small
parameter e is small compared to unity:

A1t ¼ A1ðT1 � �tÞ ¼ A1ðT1Þ � �tA01ðT1Þ þ �
2t2A001 þ . . . . (18)

Substituting Eqs. (14)–(18) into Eqs. (12) and (13) yields

D2
0x11 þ o2

1x11 ¼
1

2
f eiOT0 � io1ð2A01 þ m1A1Þe

io1T0 � a1ðA3
1e

i3o1T0 þ 3A2
1Ā1e

io1T0Þ

� a2 A1A
2
2e

iðo1þ2o2ÞT0 þ Ā1A
2
2e

ið�o1þ2o2ÞT0 þ 2A1A2Ā2e
io1T0

� �
� gA1e

io1ðT0�tÞ þ gA1e
io1T0 þ cc, ð19Þ

D2
0x21 þ o2

2x21 ¼ � io2ð2A02 þ m2A2Þe
io2T0 � b1ðA

3
2e

i3o2T0 þ 3A2
2Ā2e

io2T0 Þ

� b2 A2A
2
1e

iðo2þ2o1ÞT0 þ Ā2A
2
1e

ið�o2þ2o1ÞT0 þ 2A1A2Ā1e
io2T0

� �
þ cc, ð20Þ

where ð Þ0 � qð Þ=qT1 ¼ qð Þ=qð�tÞ. In the following part, a case of the primary resonance and 1:1 internal
resonance is considered. The nearness of the external resonance is represented by a detuning parameter s1
defined by

O ¼ o1 þ �s1. (21)
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To describe the nearness of the internal resonance, a detuning parameter s2 is introduced and defined by

o1 ¼ o2 � �s2. (22)

Substituting Eqs. (21) and (22) into Eqs. (19)–(20) and setting the coefficients of the secular terms to zero
yielding the solvability conditions given by

1

2
f eis1T1 � io1ð2A01 þ m1A1Þ � 3a1A2

1Ā1 � a2ðĀ1A
2
2e

i2s2T1 þ 2A1A2Ā2Þ � gA1e
�io1t þ gA1 ¼ 0, (23)

�io2ð2A02 þ m2A2Þ � 3b1A
2
2Ā� b2ðĀ2A2

1e
�i2s2T1 þ 2A1A2Ā1Þ ¼ 0. (24)

Introducing polar notation A1ðT1Þ ¼
1
2
a1ðT1Þe

iy1ðT1Þ and A2ðT1Þ ¼
1
2
a2ðT1Þe

iy2ðT1Þ into Eqs. (23)–(24) and
setting the coefficients of the real and imaginary parts to zero yields the algebraic equations given by

a01 ¼
1

o1

1

2
f sin f1 �

1

2
o1m1a1 þ

1

8
a2a1a

2
2 sinð2f2Þ þ

1

2
ga1 sinðo1tÞ

� �
, (25)

a02 ¼
1

o2
�
1

2
o2m2a2 �

1

8
b2a2

1a2 sinð2f2Þ

� �
, (26)

f01a1 ¼
1

o1

1

2
f cos f1 þ o1s1a1 �

3

8
a1a3

1 �
1

4
a2a1a

2
2 �

1

8
a2a1a2

2 cosð2f2Þ

�

�
1

2
ga1 cosðo1tÞ þ

1

2
ga1

�
, ð27Þ

ðf01 þ f02Þa2 ¼
1

o2
o2ðs1 � s2Þa2 �

3

8
b1a

3
2 �

1

4
b2a

2
1a2 �

1

8
b2a2

1a2 cosð2f2Þ

� �
, (28)

where f1 ¼ s1T1 � y1, f2 ¼ y1 � y2 � s2T1.
4. Equilibrium solutions and their stability

It is well known that the approximate solutions of Eqs. (3)–(4) correspond to the equilibrium solutions of
Eqs. (25)–(28) by setting a01 ¼ a02 ¼ f01 ¼ f02 ¼ 0, which implies that one has to solve four transcendental
equations. However, it is difficult even by numerical methods. To avoid such difficulty, we transform
Eqs. (25)–(28) into the form of the Cartesian coordinates given by

p01 ¼
1

o1
�
1

2
o1m1p1 � o1s1q1 þ

3

8
a1q1ðp

2
1 þ q2

1Þ þ
1

4
a2q1ðp

2
2 þ q2

2Þ

�

þ
1

2
g sinðo1tÞp1 þ cosðo1tÞq1 � q1

� 	
þ

1

8
a2 2p1p2q2 þ q1ðq

2
2 � p2

2Þ
� 	


, ð29Þ

q01 ¼
1

o1

1

2
f �

1

2
o1m1q1 þ o1s1p1 �

3

8
a1p1ðp

2
1 þ q2

1Þ �
1

4
a2p1ðp

2
2 þ q2

2Þ

�

þ
1

2
g sinðo1tÞq1 � cosðo1tÞp1 þ p1

� 	
�

1

8
a2 2q1p2q2 þ p1ðp

2
2 � q2

2Þ
� 	


, ð30Þ

p02 ¼
1

o2
�
1

2
o2m2p2 � o2ðs1 � s2Þq2 þ

3

8
b1q2ðp

2
2 þ q2

2Þ þ
1

4
b2q2ðp

2
1 þ q2

1Þ

�

þ
1

8
b2 2p2p1q1 þ q2ðq

2
1 � p2

1Þ
� 	


, ð31Þ
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q02 ¼
1

o2
�
1

2
o2m2q2

�
þ o2ðs1 � s2Þp2 �

3

8
b1p2ðp

2
2 þ q2

2Þ �
1

4
b2p2ðp

2
1 þ q2

1Þ

�
1

8
b2 2q2p1q1 þ p2ðp

2
1 � q2

1Þ
� 	


, ð32Þ

where p1 ¼ a1 cos f1, q1 ¼ a1 sin f1, p2 ¼ a2 cosðf1 þ f2Þ and q2 ¼ a2 sinðf1 þ f2Þ.
To determine the stability of the equilibrium solutions, Eqs. (29)–(32) are perturbed by a small perturbation.

The perturbation equations are shown as follows:

fDp01;Dq01;Dp02;Dq02g
T ¼ ½J�fDp1;Dq1;Dp2;Dq2g

T, (33)

where T denotes transpose of the matrix, [J] is the Jacobian matrix. Equation of the eigenvalues corresponding
to a fixed equilibrium solution may be expressed as

l4 þ d1l
3
þ d2l

2
þ d3lþ d4 ¼ 0, (34)

where l denotes eigenvalues of matrix [J], d1, d2, d3 and d4 are coefficients of the equation.
Routh–Hurwitz criterion is used to establish the stability of the equilibrium solutions. Accordingly, the

necessary and sufficient condition for the stable system is

d140; d1d2 � d340; d3ðd1d2 � d3Þ � d21d440; d440. (35)

The condition for the occurrence static bifurcation may occur:

d4 ¼ 0. (36)

The necessary and sufficient condition when Hopf bifurcation occurs in the system is

d1d340; d3 d1d2 � d3ð Þ � d21d4 ¼ 0. (37)

The equilibrium is stable if and only if the real parts of all eigenvalues are negative and unstable if positive,
corresponding to the steady-state solutions in Eqs. (3) and (4). If a real eigenvalue changes sign, a
saddle–node-type bifurcation occurs in the system, resulting in jump phenomena. If there exists a pair of
complex conjugate eigenvalues and their real part changes sign, a Hopf bifurcation appears, resulting in a
quasi-periodic motion in the original system.

For delayed feedback control system, it is generally grouped positive (eg40) and negative (ego0) feedback
control according to the sign of the gain in the delayed feedback. In the following sections, the performance of
the positive and negative feedback control technique with time delay is evaluated both in theoretical analysis
and numerical simulation respectively. The variable parameters are taken for et and eg and other parameters
are fixed as o1 ¼ 1:0, o2 ¼ 1:0, �a1 ¼ 0:30, �a2 ¼ 0:90, �b1 ¼ 0:30, �b2 ¼ 0:90, �m1 ¼ 0:10, �m2 ¼ 0:10,
�s1 ¼ 0:10, �s2 ¼ 0, �f ¼ 0:30.

5. Performance of the control strategy for positive delayed feedback control

Setting p01 ¼ q01 ¼ p02 ¼ q02 ¼ 0 in Eqs. (29)–(32) and using ai ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2

i þ q2
i

p
i ¼ 1; 2, one may obtain the

equilibrium solutions for eg40, as shown in Fig. 2, where H( � ) are denoted as the Hopf bifurcation points,
SN( � ) the saddle–node bifurcation points, PF( � ) the pitchfork bifurcation points and HD( � ) the boundary
points to distinguish those unstable foci and other unstable equilibriums. The solid line represents stable
solutions, dot with black represents unstable foci and dot with blank represents other unstable solutions.

Fig. 2a shows the amplitude–delay response curves when �g ¼ 0:10. The amplitude increases as et increases
at the beginning. Then, the amplitude decreases as et increases. Furthermore, we observed that the
amplitude–delay response curve is always stable at time delay space. It is inconspicuous for a tunable range of
et to suppress the vibration of vertical displacement. With eg increasing to 0.13, the solution undergoes a Hopf
bifurcation at H1 and H2, as shown in Fig. 2b. It implies that the periodic solution disappears and the
complicated motions may occur in the system when �t is located between H1 and H2. When eg is increased
further to 0.144 and 0.145, the saddle–node bifurcation occurs at SN1 and SN2, yielding two stable solutions
and one unstable solution coexist between SN1 and SN2. The solution may jump from one steady state to
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another one, which depends on the initial conditions, as shown in Fig. 2c and d. A tunable range of et to
suppress the vibration is obtained when time delay is located between SN1 and SN2.

As depicted in Fig. 2e and f when �g ¼ 0:155 and 0.159, the increase of the gain yields that the unstable
branch bifurcating from SN1 or SN2 collides with the upper stable branch such that the point at SN1 becomes
the pitchfork bifurcation one (denoted as PF1), and a new saddle–node bifurcation point at SN3 is obtained.
In addition, two Hopf bifurcations H3 and H4 occurred between PF1 and SN2 (see Fig. 2f). There may be four
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Fig. 2. Amplitude–delay response curves of vertical displacement with different gains for positive delayed feedback control.
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Fig. 2. (Continued)
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solutions between PF1 and SN2, two stable solutions and two unstable ones. It follows from Fig. 2e and f that
two possible region of vibration suppression may be obtained. One is located at the region between PF1 and
H3, the other is between H4 and SN2.

The amplitude–delay response curves become complicated in Fig. 2(g), where �g ¼ 0:18. In fact, the point
H3 incorporates with PF1 such that the points disappear and the points SN1 and SN6 occur again
when the gain is increased gradually. Then, the upper unstable branch bifurcating from SN1 or SN6

collides with the stable branch from SN2, yielding two new saddle–node bifurcation points, denoted as SN4

and SN5. Noting that in Fig. 2(g), there are five solutions between H3 and SN4, three stable solutions
and two unstable ones. The system has complicated dynamical behaviors between H3 and SN4. It can be seen
that there are several regions of vibration suppression in et, i.e. the region between H3 and SN4, the
region between SN4 and SN5, and the region between SN5 and SN2. It can be seen that the region where et is
located in the interval [SN4, SN5] is the best choice, corresponding to the best performance of vibration
suppression.

When the gain is changed from 0.18 to 0.25, the unstable branches bifurcating from SN6 disappear and yield
the points SN5 that collide with SN6 on the one hand, and the unstable branch from SN4 shrinks such that
SN4 collides with SN1 on the other hand. As a result, the amplitude–delay response curves become relative
simple. Correspondingly, only one region of vibration suppression may be obtained between H3 and SN1, as
shown in Fig. 2(h). A more large value of the gain yields that the topological structure of the response curve is
changed (see Fig. 2i). It should be noted that the response shown in Fig. 2i is different from those in Fig. 2c
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and d, where the curve from the saddle–node bifurcation is in the lower location. It implies that the attracting
area corresponding to every solution is changed with the gain increasing. Thus, a tunable range of et to
suppress the vibration can be found much easily, as shown in Fig. 2(j).

It follows from Fig. 2 that the amplitude–delay response curves is periodic in the time delay, which suggests
that it is enough to analyze the amplitude–delay response curves in one period. Fig. 2 shows also that a large
value of the gain can provide more choices for et to suppress the vibration. But it can lead to the system losing
its stability such that the motion becomes complicated. Therefore, the gain should be modified very carefully
in applications.

One has seen that the coexisted solutions, a tunable range of et to suppress the vibration and complex
motions may occur in the system with the gain and delay varying by the analytical method mentioned above.
Now, we employ the numerical method to verify these analytical predictions based on Eqs. (3)–(4). The initial
conditions are taken as x1ð0Þ ¼ x2ð0Þ ¼ 10�4, _x1ð0Þ ¼ _x2ð0Þ ¼ 10�4, x1ðtÞ ¼ x2ðtÞ ¼ 0, _x1ðtÞ ¼ _x2ðtÞ ¼ 0 for
t 2 ½��t; 0Þ in all numerical simulation except those specially given cases. The parameters are the same as those
in Fig. 2.

First, the analytical results are compared with the numerical ones quantitatively. Fig. 3 shows the
comparison of the results between numerical simulations and analytical solutions for amplitude–delay
response curves when �g ¼ 0:10, corresponding to Fig. 2a, where the solid line represents the analytical
solution and the dot with asterisk symbol the numerical result. It follows from Fig. 3 that the analytical
solution is in agreement with that from the numerical simulation, which suggests that the analysis is valid.

From the above analysis, multiple solutions have been predicted with the gain and delay varying, as shown
in Fig. 2(c)–(i). We take �g ¼ 0:145 and 0.18, corresponding to Fig. 2(d) and (g) respectively, to verify such
analytical prediction. The numerical simulation is shown in Figs. 4 and 5. Fig. 4 shows that there are two
stable solutions for two different initial conditions given by x1ð0Þ ¼ x2ð0Þ ¼ _x1ð0Þ ¼ _x2ð0Þ ¼ 10�4and x1ð0Þ ¼
x2ð0Þ ¼ _x1ð0Þ ¼ _x2ð0Þ ¼ 10�1 when �t ¼ 3:40. In Fig. 5, three different initial conditions given by
x1ð0Þ ¼ x2ð0Þ ¼ _x1ð0Þ ¼ _x2ð0Þ ¼ 10�4, x1ð0Þ ¼ x2ð0Þ ¼ _x1ð0Þ ¼ _x2ð0Þ ¼ 10�2 and x1ð0Þ ¼ x2ð0Þ ¼ _x1ð0Þ ¼
_x2ð0Þ ¼ 10�1 yields three coexisted stable solutions at �t ¼ 3:0. It follows from Figs. 4 and 5 that the
analytical prediction is in agreement with the numerical simulation completely.

It has been predicted there is a tunable range of et to suppress the vibration for different values of the gain.
Now, we choose a case, i.e. �g ¼ 0:25, as shown in Fig. 2(h) to verify such prediction quantitatively. Fig. 6
shows the time history of the solutions corresponding to �t ¼ 0, �t ¼ 3:0 and �t ¼ 4:0. It is seen that the
amplitude of the vertical displacement is suppressed from 1.30 to about 0.45. The oscillations of the vertical
displacement are maximally suppressed amounting to about 65% for positive delayed feedback control. It
should be indicated that the analytical solutions agree with numerical integration well until �g ¼ 0:25 by
combining Fig. 6 with Fig. 2.
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Fig. 3. Comparison between numerical simulation and analytical solution for amplitude–delay response curves when �g ¼ 0:10.
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Finally, we observe what possible complex motions may occur by numerical method when the delay is
located between H1 and H2. Figs. 7 and 8 show the phase plane and the Poincaré section for �t ¼ 1:5,
�g ¼ 0:18 and �t ¼ 2:0, �g ¼ 1:0 (see Fig. 2g and j). The diagram in the Poincaré section is obtained by

P ¼ x1ðtÞ; _x1ðtÞ; x2ðtÞ; _x2ðtÞð Þjx1ðt� tÞ ¼ 0; t40
� �

.

It follows from Figs. 7 and 8 that those complex motions predicted in the analysis are all quasi-periodic since
the closed curve occurs in the Poincaré section.

We have completed the numerical examination for the analytical prediction. The results show the analytical
prediction is valid both quantitatively and qualitatively. This will be helpful to explain the evolution of the
dynamical behavior more clearly when the delayed feedback control is adopted in the system under
consideration. For example, it follows from Fig. 2d that the motion of the vertical displacement is a periodic
motion as �to0:75 (denoted as H1). The solution undergoes a Hopf bifurcation at �t ¼ 0:75 and a quasi-
periodic motion occurs in the system until �t ¼ 2:40(denoted as H2). The motion returns to the periodic one
for �t ¼ 2:40. With the delay is increased to �t ¼ 3:40 (denoted as SN1), the periodic motion may jump to
another stable periodic motion with a small amplitude depending on the energy level of initial condition. The
multiple solutions occur in the system until �t ¼ 4:20 (denoted as SN2). Then the motion returns to periodic
one again. Such evolution is repeated periodically when the delay is increased further.
6. Performance of the control strategy for negative delayed feedback control

Now we consider the case of the negative feedback control with the time delay, i.e. ego0. The
amplitude–delay response curve is shown in Fig. 9 by calculating Eqs. (29)–(32), where H( � ) are denoted as the
Hopf bifurcation points, SN( � ) the saddle–node bifurcation points. The solid line represents stable solutions,
dot with black represents unstable foci and dot with blank represents other unstable solutions.

Fig. 9a shows the amplitude–delay response curves when �g ¼ �0:10. The amplitude decreases as et
increases at the beginning. Subsequently, the amplitude increases when et is increased. It is obvious
to see that the vibration of vertical displacement is suppressed for almost all values of the time delay. With eg
increasing to �0.15, the solution undergoes a Hopf bifurcation at H1 and H2 as is shown in Fig. 2b. It
indicates the complicated motions may occur when et is located between H1 and H2. With eg is
increased further, the saddle–node bifurcation occurs at SN1 and SN2 (see Fig. 2c). A stable and an unstable
solution coexist for those values of et between SN1 and SN2. Correspondingly, the maximum suppressed
amplitude is improved by increasing the eg. However, the tunable range of et for vibrations suppression
shrinks.
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We notice that the topological structure of the amplitude–delay response curves is the same from Fig. 9c to
f. The vibration of the vertical displacement could be suppressed to a great extent and complex motions may
occur simultaneously in the system under consideration by tuning the gain and the time delay.

The above analysis clearly shows that a better performance of vibration suppression is attained for the
negative delayed feedback. Although a small value of the gain can provide large range of et to suppress the
vibration, the benefit of the suppression is not in evidence. For a large value of the gain, the effect of
suppressing vibration is very clear but the tunable range of the time delay becomes narrow. In addition, a large
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value of the gain may lead to the complicated motions occurring in the system for some values of the time
delay between H1 and H2.

Now we perform a series of numerical results derived from Eqs. (3) and (4), to confirm various predictions
mentioned above. The initial conditions are taken as x1ð0Þ ¼ x2ð0Þ ¼ 10�4, _x1ð0Þ ¼ _x2ð0Þ ¼ 10�4, x1ðtÞ ¼

x2ðtÞ ¼ 0, _x1ðtÞ ¼ _x2ðtÞ ¼ 0 for t 2 ½��t; 0Þ. The parameters are the same as those in Fig. 9.
First, the comparison of the results between numerical simulation and analytical solutions is shown in

Fig. 10 when �g ¼ �0:10, where the solid line represents the analytical solution and the dot with asterisk
symbol the numerical result. It can be seen that the numerical simulation agrees with the analytical solutions
well corresponding to Fig. 9a, which suggests that the analytical predictions are valid.

It has been predicted from the above analytical solutions that the effect of suppressing vibration is very clear
for a large value of the gain. We chose two cases corresponding to Fig. 9d and f (see Fig. 11) to verify the
prediction quantitatively. It is obviously to see that the amplitude of the vertical displacement is maximally
suppressed about 55% when �g ¼ �0:30 and about 86% when �g ¼ �0:10. The analytical solutions agree with
the numerical simulations well by comparing Fig. 11 with Fig. 9.

We have predicted from the above analytical solutions that complex motions may occur when delay is
located between H1 and H2. Correspondingly, we observe that chaotic motions occur in some values of time
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delay by numerical method. Figs. 12 and 13 show the phase plane and Poincaré section for �g ¼ �0:60,
�t ¼ 4:0 and �g ¼ �1:0, �t ¼ 5:0 (see Fig. 9e and f). In the following cases, the diagram in the Poincaré section
is obtained by

P ¼ x1ðtÞ; _x1ðtÞ; x2ðtÞ; _x2ðtÞð Þjx1ðt� tÞ ¼ 0; t40
� �

.

It follows from Figs. 12 and 13 that those complex motions predicted in the above prediction are chaotic
motions as Poincaré section has the appearance of a strange attracter.

Finally, the evolution of the dynamical behavior under consideration may be illustrated by numerical
method. For the case of �g ¼ �0:30, the Poincaré section for different values of t is shown in Fig. 14. The
motion of the vertical displacement is periodic when �to3:5 (denoted as H1 in Fig. 9d) as shown in Fig. 14a.
The solution undergoes a bifurcation at �t ¼ 3:5 and a quasi-periodic motion occurs. It can be confirmed by
Fig. 14b. When the delay is increased, the system enters the chaotic motions and a strange attractor occurs in
the Poincaré section as shown in Fig. 14c. When et is increased further, the quasi-periodic motion occurs again
in the system until �t ¼ 6:0 (denoted as H2 in Fig. 9d). Correspondingly, a closed curve occurs in the Poincaré
section (see Fig. 14d). For the much larger values of t, the periodic motion occurs in the system again as shown
in Fig. 14e. Such evolution is also found by Xu and Yu [31].
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Based on the analysis of Fig. 14, it is easy to see that the motion of the system undergoes the process of
periodic–quasi-periodic–chaotic–quasi-periodic–periodic motions. The process just displays the routes to
chaos, that is from quasi-periodic motions to chaotic ones. It follows that time delay plays an important role
in the dynamic system under consideration. For a fixed gain, time delay may be used as a control parameter. It
may not only be used to suppress the vibration to be controlled but also may control complex dynamical
behaviors, such as quasi-periodic motions and chaotic motions.
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Fig. 15. Bifurcation curves for Hopf and saddle–node.
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It is clear that the negative delayed feedback control can provide more range of et than the positive one to
suppress the vibration of the system under consideration. Moreover, the vibration of vertical displacement
could be maximally suppressed about 86% for the former and 65% for the latter by comparing with the
nonlinear vibration absorber without delayed feedback control. However, the negative delayed feedback
control may lead to chaotic motions at some values of et, while the positive one may only result in quasi-
periodic motions.

In order to analyze the effect of both gain and time delay on dynamical behavior for negative delayed
feedback control, the bifurcation curves for Hopf and saddle–node are shown in Fig. 15.

Fig. 15 shows that the bifurcation curves divide the plane into five regions. The dynamical behaviors of the
system are shown as follows in different divisions.

The system has a stable equilibrium solution in region I, III and V. The motion of the system is periodic in
these regions. A stable and an unstable equilibrium solution coexist in region II. Correspondingly, jump
phenomena may occur in this region. In region IV, the equilibrium solution of the system is unstable focus.
Quasi-periodic or chaos motion may occur in this region.

7. Conclusion

We propose a delayed feedback control in a two-degree-of-freedom nonlinear system with external
excitation. The position feedback control with time delay has been studied for the primary resonance and 1:1
internal resonance of a nonlinear vibration absorber simultaneously. We develop the governing equations and
obtain the approximate solutions of the delayed differential equations by the method of multiple scales.
Analytical solutions are used to analyze and understand the mechanism that makes the vibration absorber
work. Moreover, the analytical predictions are in good agreement with numerical simulation both
quantitatively and qualitatively. The focus is the effect of the gain and the delay on the performance of the
vibration suppression since they are often used as control parameters for vibration suppression. Two control
strategies for positive and negative delayed feedback have been investigated respectively.

For the case of positive delayed feedback control, a tunable range of et is obtained to suppress the vibration
of the system under consideration. The vibration of vertical displacement is maximally suppressed about 65%
by comparing with the nonlinear vibration absorber without delayed feedback control. Yet, at some values of
time delay that the vibration suppression is invalid, complex motions may occur in the system. For the case
of negative delayed feedback control, a tunable range of et is also obtained to suppress the vibration of
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the system. Moreover, the vibration of vertical displacement is maximally suppressed about 86% by
comparing with the nonlinear vibration absorber without delayed feedback control. But the chaotic motions
may occur at some values of time delay.

We have noticed that, for positive and negative delayed feedback control strategies, the maximum vibration
suppression point is improved for a large value of the gain. But it may lead to the system losing stability such
that the motion becomes complicated. Therefore, the gain should be modified very carefully in applications.
We remark that for a fixed gain, time delay plays an important role in the dynamical system. It may be used as
a control parameter not only to suppress the vibration but also to generate complex motions in the dynamical
system, such as quasi-periodic motions and chaotic motions.
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